ドキュメント一覧
このページの内容

統計分布の徹底ガイド(シミュレーション対応)

分布を使う理由

現実のプロセスにはバラつきがあります。例えば、お客様対応が5分で終わる場合もあれば、25分かかることもあります。一日の注文数も50件の日もあれば120件の日も。こうした自然なバリエーションはビジネスプロセスの本質的な特徴です。

Fixed値(「すべての作業がきっちり10分」など)は非現実的なシミュレーションになりがちですが、分布を使えば変動を数理的に表現し実際のプロセス挙動を再現できます。

ばらつきの影響

平均10分のタスクにおける2つのシナリオを比較:

シナリオ分布シミュレーションへの影響
固定10分ばらつきなし非現実的なキュー、単調な流れ
Normal (mean=10, stdDev=3)現実的なばらつき自然なキュー、実際に近い遅延

後者の方が現実的です。タスクごとに時間は異なり、そのばらつきがキューや遅延を生み出します。


利用可能な分布

ProcessMindは、さまざまなバリエーションを表現するために8種類の分布タイプを提供しています。

分布主な用途主なパラメータ
Fixed一定で変わらない値value
Normal平均値を中心に対称のばらつきmean, stdDev
Uniform範囲内で等確率の分布min, max
Triangularもっとも起こりやすい値がある範囲min, mode, max
Poissonランダムなeventの発生lambda, rateUnit
Lognormal右に裾の長い分布(通常は短く、たまに長い)mean, stdDev
Weibull信頼性や障害分析scale, shape
Pearson VI複雑な歪みパターンalpha1, alpha2, beta

Fixed分布

もっともシンプルな分布で、常に同じ値を返します。

パラメータ

パラメータ説明
value返される一定の値

特徴

  • まったくバリエーションなし
  • 毎回指定値を返す
  • システム制御や自動stepのモデリングに便利

利用シーン

  • 一定時間内に応答する自動システム
  • 規制のタイムアウトや締切
  • バリエーション追加前のシミュレーション初期設定
  • SLAや契約上の納期をモデル化するとき

システム生成メールは必ず5秒で送信されます。


Normal(ガウス)分布

よく知られる「ベルカーブ」で、値は平均を中心に左右対称に分布し、中心から離れるにつれて確率が低下します。

パラメータ

パラメータ説明
mean平均値(曲線の中心)
stdDev標準偏差(値のばらつき度合い)

特徴

  • 平均値を中心に対称分布
  • 全体の68%が1標準偏差内
  • 95%が2標準偏差内
  • 99.7%が3標準偏差内
  • 理論上マイナス値も出る(シミュレーションで補正)

利用シーン

  • 平均を中心におおよそ均等にばらつく処理時間
  • ランダムエラーを含む測定値
  • 多くの独立要素の影響を受ける量

データ入力taskの平均5分・標準偏差1分の場合:

  • 68%は4~6分
  • 95%は3~7分
  • 2分未満または8分超はごくわずか

Uniform分布

指定範囲内は全ての値が等確率で発生するフラットな分布です。

パラメータ

パラメータ説明
min最小値
max最大値

特徴

  • すべての値が等確率
  • minとmaxで明確に区切り
  • 平均値は(min + max) / 2に等しい

利用シーン

  • 範囲だけわかっていて代表値が不明な場合
  • 一定範囲からランダム選択したい時
  • scheduled eventの待ち時間
  • 履歴データがなく不確実性をモデル化したい場合

承認作業は2~8分の範囲で発生し、全ての値が等確率です。典型値の情報はありません。


Triangular分布

最小・最大・最頻値(mode)の3点で構成されるシンプルな三角形状の分布です。

パラメータ

パラメータ説明
min最小値
mode最頻値(三角形ピーク)
max最大値

特徴

  • mode付近に値が集まりやすい
  • minとmaxで明確に範囲が決まる(それ以上の外れは出ません)
  • mode≠(min+max)/2なら非対称
  • 現場感覚でも推定しやすい

利用シーン

  • 「通常はXだが、YからZまで幅がある」場合
  • 専門家による見積もりの場合
  • Normal分布だと非現実的な負の値になるとき

請求書確認作業:

  • ベストケース (min): 2分
  • 標準的 (mode): 5分
  • ワーストケース (max): 15分

多くは5分前後ですが、複雑な請求書ほど15分寄りになります。

Expert Estimation

Triangular分布は現場の見積もりに最適です。「最短は?普通は?最長は?」と聞けばmin, mode, maxがすぐに得られます。


Poisson分布

一定期間で発生するevent数をモデル化します。到着プロセスのモデリングに最適です。

パラメータ

パラメータ説明
lambdaeventの平均発生率
rateUnitレートの時間単位(perHour, perDay, perWeek, perMonth, perYear)

特徴

  • 離散値(整数:0, 1, 2, 3…)
  • 分散=平均
  • eventは互いに独立
  • ランダムな到着を正確にモデル化

利用シーン

  • プロセスへのcase(事例)の流入
  • 顧客到着のモデル化
  • オーダー生成のタイミング
  • 一定時間ごとに発生するeventのシナリオ

Lambda=20, rateUnit=perDayは1日あたり約20件のcase到着をモデル化します。日によって15件や25件の日もあり(自然なバラつきです)。


Lognormal分布

右側に裾が伸び、多くは小さい値ですが、ときどき大きな値が発生します。値の対数がNormal分布に従います。

パラメータ

パラメータ説明
mean基礎となるNormal分布の平均値
stdDev基礎となるNormal分布の標準偏差

特徴

  • 常に正の値(マイナスになりません)
  • 右側に裾が伸びている(大きな値がまれに発生)
  • 多くは下のほうに値が集中
  • まれに非常に大きい値も出る

利用シーン

  • ほとんど素早く完了するが、ごくたまに長時間かかるタスク
  • 財務データや収入分布
  • 時々遅れるレスポンスタイム
  • バグ修正時間

テクニカルサポートのチケット:

  • 多くは1~2時間で解決
  • 一部は1日かかる
  • まれに複雑なものは数日要す

Lognormal分布でこの「たいてい早いがたまに長い」ケースを表せます。


Weibull分布

信頼性工学や障害分析でよく使われる柔軟な分布です。

パラメータ

パラメータ説明
scaleスケールパラメータ(代表的寿命)
shape形状パラメータ(分布の形状の決定要素)

形状パラメータの影響

形状値分布の挙動
shape below 1故障率が低下(初期故障)
shape = 1故障率が一定(指数分布)
shape above 1故障率が上昇(摩耗故障)

利用シーン

  • 設備の故障時間シミュレーション
  • eventまでの時間分析
  • 信頼性モデリング
  • 分布形状を柔軟にコントロールしたい場合

Pearson VI分布

単純なモデルでは表現できない複雑な歪みパターン向けの高度な分布です。

パラメータ

パラメータ説明
alpha1第一の形状パラメータ
alpha2第二の形状パラメータ
betaスケールパラメータ

利用シーン

  • データ分析から得られた複雑な分布の適用
  • シンプルな分布で合わない場合
  • 高度な統計モデリングが必要なとき

適切な分布の選び方

クイックリファレンス:処理時間

状況推奨分布
平均値を中心に対称にばらつくNormal
範囲(min~max)のみ分かるUniform
典型・最短・最長が分かるTriangular
ほとんどが短時間だが一部かなり長いLognormal
常に一定時間(まれ)Fixed

クイックリファレンス:到着率

状況推奨分布
ランダム・独立で到着Poisson
一定間隔で到着Fixed

ベストプラクティス

シンプルに始める

まずはNormal分布やTriangular分布から始めましょう。わかりやすく、パラメータ設定も簡単です。必要な場合のみ複雑な分布を使いましょう。

専門家の知見を活用

専門家の推定は非常に参考になります:

  • 「最良の場合?」→ 最小値
  • 「一般的な場合?」→ 平均またはモード
  • 「最悪の場合?」→ 最大値

データで検証

履歴データがある場合:

  1. データに合う分布をあてはめる
  2. シミュレーションと実績を比較
  3. 分布パラメータを調整する

外れ値の考慮

現実のプロセスでは外れ値が発生することも多いです。LognormalやWeibull分布はNormalやTriangularより外れ値をうまく表現できます。

プロセス挙動へのマッチング

  • 対称的なばらつき → Normal
  • 範囲限定のばらつき → TriangularまたはUniform
  • 右に裾が広い場合 → Lognormal
  • 複雑なパターン → WeibullまたはPearson VI

次のステップ

How It Works
シミュレーションエンジンが分布をどのように使うか理解しましょう。